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Abstract

We examine two quantum operations, the permutation test and the circle test,
which test the identity of n quantum states. These operations naturally extend
the well-studied swap test on two quantum states. We first show the optimality
of the permutation test for any input size n as well as the optimality of the
circle test for three input states. In particular, when n = 3, we present a
semi-classical protocol, incorporated with the swap test, which approximates
the circle test efficiently. Furthermore, we show that, with the help of classical
preprocessing, a single use of the circle test can approximate the permutation
test efficiently for an arbitrary input size n.

PACS numbers: 03.67.−a, 03.67.Ac

1. Introduction

When we manipulate quantum information, one of the fundamental operations is to compare
two or more pieces of quantum information. In particular, we wish to test whether two quantum
states are identical or nearly orthogonal to each other. A standard quantum operation to test
the identity of two quantum states is the (controlled) swap test, which ‘conditionally’ swaps
the two quantum states and obtains an answer by measuring its controlled qubit. The swap
test finds a direct application to, for instance, the fingerprinting protocol of Buhrman et al [7].
They considered the following three-party communication game (known as the simultaneous
message passing model in communication complexity [16]). Two parties, Alice and Bob, hold
m-bit inputs x and y, respectively, and the referee wishes to calculate a desired value f (x, y)

correctly with high probability, based solely on the messages received from Alice and Bob,
who are prohibited to communicate with each other.
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For instance, the equality function EQ (i.e., EQ(x, y) = 1 if x = y and 0 otherwise)
requires, by a quantum operation of Buhrman et al [7], Alice and Bob to send quantum
information of O(log m) qubits to the referee, who applies the swap test over the received
quantum states to test whether x = y (and thus computes EQ(x, y)). In Stark comparison,
Alice and Bob should send �(

√
m) bits of classical information to referee [4, 17] (this bound

turns out to be tight [2]) to compute the equality function. The usefulness of the swap test
in the above protocol of Buhrman et al stems from the fact that two quantum states received
from Alice and Bob are either identical (when x = y) or nearly orthogonal (when x �= y).

Besides [7], the swap test has been a key player in various fingerprinting protocols in, e.g.,
[3, 6, 11, 18, 20]. Moreover, the swap test has been used in various physical and computational
settings, which include stabilization of quantum computation [5], quantum estimation [9],
quantum Merlin–Arthur games [15] and black-box group problems [10]. Nevertheless, the
swap test handles only two quantum states. How can we test the identity of more than two
quantum states?

This paper examines two natural generalizations of the swap test, referred to as the
permutation test and the circle test, which turn out to be useful tools in testing the identity
of three or more quantum states. Instead of swapping two states in the swap test, the
permutation test ‘conditionally’ permutes n input states by applying, in superposition, all
possible permutations over n elements. The circle test is a simpler form of the permutation
test using only multiple applications of a single permutation. (For their formal definitions,
see section 2.) In a slightly different context, the permutation test can be used to amplify the
success probability of the aforementioned quantum protocol for EQ [7]. In this paper, our
focal point is the following problem of testing the identity of n quantum states in a state space
H, provided that these states are either identical or mutually orthogonal, for simplicity of our
argument.

Quantum-state identity problem (QSIn)
Input: n quantum states (|ψ1〉, |ψ2〉, . . . , |ψn〉) in a state space H.
Promise: Any pair of the n quantum states is equal or orthogonal.
Output: YES if all n states are identical; NO otherwise.

Over two input states, the swap test can solve the above identity problem QSI2 by
outputting ‘EQUAL’ on any ‘YES’ instance with certainty (completeness error probability 0)
and outputting ‘NOT EQUAL’ on any ‘NO’ instance with probability exactly 1/2 (soundness
error probability 1/2). Under the so-called one-sided error requirement, in which the
completeness error probability should be 0, the swap test is known to be an optimal quantum
operation for the identity problem QSI2. This fact was implicitly proven in 2001 by Kobayashi
et al [14] (see also [6]). In section 2, we show the optimality of the circle test as well as the
permutation test under the same one-sided error requirement; more precisely, the circle test is
an optimal operation for the problem QSI3, and the permutation test is optimal for QSIn for
an arbitrary input size n � 2.

Subsequently, we present efficient approximations of the circle test and the permutation
test using ‘semi-classical’ protocols involving the swap test and the circle test, respectively.
As a direct consequence, these approximations help us build a concise quantum circuit that
solves the problem QSIn efficiently, because a quantum circuit that implements the swap test
(resp. the circle test) is significantly more concise than any quantum circuit for the circle
test (resp. the permutation test). In section 3, we show how a certain sequential application
of the swap test efficiently approximates the circle test for QSI3. Such an operation gives
an optimal approximation procedure. In section 4, we show that, with the help of classical
preprocessing, a single application of the circle test can approximate the permutation test for
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QSIn with efficiency, which is one-sided error and has optimal soundness error probability up
to a multiplicative factor of smaller than 2. We conclude in section 5 with an extension of our
results and also a suggestion of future directions.

2. The permutation test and the circle test

Besides the well-studied swap test, we introduce two useful tests, called the permutation
test and the circle test, which are intended to solve our quantum-state identity problem QSIn
on n input states taken from a state space H. We begin with the formal definition of the
permutation test on n quantum states (|ψ1〉, |ψ2〉, . . . , |ψn〉) ∈ H⊗n. For our notational
convenience, let σ = {σ0, σ1, . . . , σn!−1} denote the set of all n! permutations over the integer
set [n] := {1, 2, . . . , n}; namely, for each i ∈ [n], σi denotes the ith element of the symmetric
group Sn (in a certain fixed order). Note that the swap test is in fact the permutation test on
two quantum states.

Permutation test
Input: n quantum states (|ψ1〉, |ψ2〉, . . . , |ψn〉) in a state space H.

(i) Start with the quantum state |0〉 ⊗ |ψ1〉 ⊗ · · · ⊗ |ψn〉, where |0〉 (often called the first
register) denotes the ground state in the n!-dimensional state space.

(ii) Apply the quantum Fourier transform Fn! over n! elements to the first register.
(iii) Apply a controlled-σ operation; that is, if the first register contains index i ∈

{0, 1, . . . , n! − 1}, transform |ψ1〉 ⊗ · · · ⊗ |ψn〉 to |ψσi(1)〉 ⊗ · · · ⊗ |ψσi(n)〉.
(iv) Apply the inverse quantum Fourier transform (Fn!)

−1 to the first register.
(v) Measure the first register in the computational basis. If 0 is observed, output EQUAL;

otherwise, output NOT EQUAL.

The circle test is a simple form of the permutation test, defined by multiple applications
of a single permutation, denoted σc, where σc is the permutation on [n] of the following form:
σc(n) = 1 and σc(i) = i + 1 for any index i ∈ [n − 1]. The notation σ

j
c (i) means the result of

the j applications of σc to i.
Our motivation for introducing the circle test is to provide a tool for building a ‘concise’

quantum circuit that solves QSIn efficiently. Consider a quantum circuit that implements
the permutation test for the problem QSIn. Since the permutation test involves the quantum
Fourier transform Fn! over n! elements, a straightforward decomposition of such a transform
gives a large-size quantum circuit for QSIn. It is therefore better to use a simpler quantum test
(than the permutation test) to solve the problem QSIn with efficiency.

Circle test
Input: n quantum states (|ψ1〉, |ψ2〉, . . . , |ψn〉) in a state space H.

(i) Start with the quantum state |0〉 ⊗ |ψ1〉 ⊗ · · · ⊗ |ψn〉 where |0〉 (often called the first
register) denotes the ground state in the n-dimensional state space.

(ii) Apply the quantum Fourier transform Fn to the first register.
(iii) Apply a controlled-σc operation; namely, when the first register contains i ∈ {0, 1, . . . , n−

1}, transform |ψ1〉 ⊗ · · · ⊗ |ψn〉 to
∣∣ψσi

c (1)

〉 ⊗ · · · ⊗ ∣∣ψσi
c (n)

〉
.

(iv) Apply the inverse quantum Fourier transform (Fn)
−1 to the first register.

(v) Measure the first register in the computational basis. If 0 is observed, output EQUAL;
otherwise, output NOT EQUAL.

In particular, when n = 2, the permutation test as well as the circle test coincides with
the swap test. For later analysis, we show how to calculate the probabilities that our new tests
on n input states output EQUAL.

3
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Lemma 1. Given n input states (|ψ1〉, . . . , |ψn〉) ∈ H⊗n, the probabilities that the permutation
test and the circle test output EQUAL are, respectively,

1

n!

n!−1∑
k=0

n∏
m=1

〈
ψm

∣∣ψσk(m)

〉
and

1

n

n−1∑
k=0

n∏
m=1

〈
ψm

∣∣ψσk
c (m)

〉
. (1)

Proof. We show the lemma only for the circle test, because the case of the permutation test can
be similarly proven. Let (|ψ1〉, . . . , |ψn〉) ∈ H⊗n be our n input states. The circle test outputs
EQUAL on these input states with probability exactly

∥∥ ∑n−1
i=0

∣∣ψσi
c (1)

〉 · · · ∣∣ψσi
c (n)

〉∥∥2/
n2, which

can be further simplified as

1

n2

n−1∑
i=0

n−1∑
j=0

〈
ψσi

c (1)

∣∣ψ
σ

j
c (1)

〉 · · · 〈ψσi
c (n)

∣∣ψ
σ

j
c (n)

〉

= 1

n2

n−1∑
k=0

n−1∑
i=0

n∏
m=1

〈
ψσi

c (m)

∣∣ψσi+k
c (m)

〉 = 1

n2

n−1∑
k=0

n−1∑
i=0

σ−i
c (n)∏

m=σ−i
c (1)

〈
ψσi

c (m)

∣∣ψσi+k
c (m)

〉
.

Clearly, the last expression equals 1
n

∑n−1
k=0

∏n
m=1

〈
ψm

∣∣ψσk
c (m)

〉
, as requested. �

From lemma 1, we can obtain the following result for the permutation test.

Proposition 1. Let n be any number at least 2. The permutation test solves the problem QSIn
with completeness error probability 0 and soundness error probability at most 1/n.

Proof. Consider a direct application of the permutation test. Obviously, the permutation test
has completeness error probability 0 due to expression (1) of lemma 1. Let us fix an arbitrary
NO instance (|ψ1〉, . . . , |ψn〉). We now argue that in the worst-case scenario, it suffices to
consider the case where all indices of our NO instance are divided into two sets I1 and I2

satisfying the following ‘equivalence’ conditions: (i) all states whose indices are in I1 (resp.
I2) are identical and (ii) any state having an index in I1 and any state having an index in I2 are
mutually orthogonal. To see that this is sufficient, consider the case where all the indices are
divided into three (or more) sets, say, I1, I2 and I3. A key observation is that the soundness
error probability on the NO instance is at most the soundness error probability on the same
instance whose indices are divided into two sets, I1 and I2 ∪I3. Therefore, we need to consider
only two sets I1 and I2.

Now, assume that we have the aforementioned two sets I1 and I2 with |I1| = l and
|I2| = n − l for a certain number l with 1 � l � n − 1. For any permutation σk , the value∏n

m=1

〈
ψm

∣∣ψσk(m)

〉
becomes 1 if and only if σk setwisely stabilizes I1 and I2; namely, σk maps

any element with an index in I1 (resp. I2) to another element in I1 (resp. I2). This property
concludes that the soundness error probability of the NO instance equals the ratio between
the number of all such permutations and the total number of permutations in Sn. This ratio is
clearly l!(n − l)!/n! � 1/n. �

Under the one-sided error requirement, we can show the optimality of the permutation test
for QSIn; namely, any one-sided error quantum operation for QSIn must have the soundness
error probability of at least 1/n. Earlier, Kobayashi et al [14] (see also [6]) implicitly proved
the optimality of the permutation test for QSI2 (equivalently, the swap test).

Proposition 2. Let n be any number greater than 1. Any quantum operation to solve QSIn
under the one-sided error requirement has soundness probability at least 1/n.

4
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Proof. Our proof generalizes the new optimality proof for the swap test of Hotta and Ozawa
[13], whose fundamental idea is similar to [6, 14]. Let H be our state space. Let {Ey,En}
denote any optimal binary positive operator-valued measure (POVM) that meets the one-sided
error requirement, from which we have Ey(|ψ〉⊗n) = |ψ〉⊗n for any state |ψ〉 ∈ H. Let PS be
the projection onto the symmetric subspace [5]

{|Sμ〉} =
⎧⎨
⎩

∑
σ∈Sn

|mσ(1)〉 · · · |mσ(n)〉
∣∣∣∣∣∣
m1,m2, . . . , mn are the indices of elements

in the computational basis of H

⎫⎬
⎭ ,

which is the subspace of H⊗n that is symmetric under the interchange of states for any pair
of positions in the tensor product. Here, we claim that PS satisfies the equation EyPS = PS .
This claim is shown as follows. Note that the symmetric subspace is also the subspace of H⊗n

spanned by all states of the form |ψ〉⊗n [5]. Using this fact, for any state |φ〉 ∈ H⊗n, PS |φ〉
can be expressed as PS |φ〉 = ∑

α cα|ϕα〉⊗n. The equality Ey(|ψ〉⊗n) = |ψ〉⊗n implies that
PS |φ〉 can be further written as

∑
α

cα|ϕα〉⊗n =
∑

α

cαEy(|ϕα〉⊗n) = Ey

(∑
α

cα|ϕα〉⊗n

)
= EyPS |φ〉.

It follows from the equality EyPS = PS that Ey = PS +
∑

ν λν |Aν〉〈Aν |, where λν is
nonnegative (because Ey is positive) and |Aν〉 lies in the orthogonal complement of the
symmetric subspace. Therefore, we conclude that Ey � PS . Note that the soundness error
probability pe equals

pe = Tr[Ey(|ψ1〉 · · · |ψn〉〈ψ1| · · · 〈ψn|)]
for a certain NO instance (|ψ1〉, . . . , |ψn〉). We want to show that pe � 1/n. Now, let us
consider a specific NO instance (|ψ1〉, . . . , |ψn〉) satisfying that |ψ2〉 = · · · = |ψn〉 as the
worst-case instance. From the inequality Ey � PS, pe is lower bounded by

pe � Tr[PS(|ψ1〉 · · · |ψn〉〈ψ1| · · · 〈ψn|)] = 1

n!

∑
σ∈Sn

n∏
i=1

|〈ψi |ψσ(i)〉|2 = 1

n
.

This completes the proof. �

Propositions 1 and 2 show the optimality of the permutation test for an arbitrary input
size n. As for the circle test, when n = 3, we can show in the following proposition that the
circle test is also optimal under the one-sided error requirement.

Proposition 3. The problem QSI3 is solved with one-sided error probability by the circle test
with soundness error probability exactly 1/3.

This proposition follows from a more general statement. For technical reasons, we define
the alternation test by replacing Sn in the definition of the permutation test with the alternating
group An, which is the group generated by the even permutations in Sn.

Lemma 2. For any number n � 2, the alternation test solves the problem QSIn with
completeness error probability 0 and soundness error probability at most 1/n.

Proposition 3 immediately follows from this lemma since A3 equals the cyclic group C3,
which defines the circle test over three states.

Proof of lemma 2. The alternation test has completeness error probability 0 since, similar
to proposition 1, the probability p that the alternation test outputs EQUAL on n input states

5
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(|ψ1〉, . . . , |ψn〉) is p = 2
n!

∑n!/2−1
k=0

∏n
m=1

〈
ψm

∣∣ψτk(m)

〉
, where τ1, . . . , τn!/2 denote all the

even permutations over [n] (in a certain fixed order). Hereafter, let us fix a NO instance
(|ψ1〉, . . . , |ψn〉). Similar to the proof of proposition 1, it suffices to deal with the case where
all indices of this NO instance are divided into two sets I1 and I2 satisfying: (i) all states having
indices in I1 (resp. I2) are identical and (ii) any state with an index in I1 and any state with an
index in I2 are mutually orthogonal. Assume that I1 and I2 satisfy |I1| = l and |I2| = n − l

for a certain number l with 1 � l � n − 1.
Note that, for any even permutation τk , the value

∏n
m=1

〈
ψm

∣∣ψτk(m)

〉
equals 1 if and only

if τk setwisely stabilizes I1 and I2. Thus, the soundness error probability of the NO instance
equals the ratio between the number L of all even permutations that setwisely stabilize I1 and
I2, and the total number |An|. We will show that this ratio L/|An| is exactly l!(n − l)!/n!,
and hence L/|An| = l!(n − l)!/n! � 1/n. Since |An| = n!/2, it is enough to prove that
L = l!(n − l)!/2. To evaluate L, we consider the following two cases: (i) l = 1 or l = n − 1
and (ii) 2 � l � n − 2.

We consider case (i) when l = 1. In this case, any even permutation that setwisely
stabilizes I1 and I2 must fix a unique element in I1, and thus it is also an even permutation
on I2. This implies that L = |An−1|, which is (n − 1)!/2, as desired. In case (ii), any even
permutation that setwisely stabilizes I1 and I2 is either (a) the product of an even permutation
over I1 and an even permutation over I2 or (b) the product of an odd permutation over I1 and
an odd permutation over I2. First, we consider case (a). Let us consider the total number of
products of even permutations over I1 and even permutations over I2. This number clearly
equals (l!/2)((n − l)!/2) = l!(n − l)!/4, which implies that L = l!(n − l)!/2. Case (b) is
similar. �

Unfortunately, the circle test cannot be optimal for certain input sizes n. For instance,
if n = 4, the circle test can achieve an optimal soundness error probability of 1/4 for a NO
instance (|ψ〉, |ψ〉, |ψ〉, |ψ⊥〉), where |ψ〉 is an arbitrary state in H and |ψ⊥〉 denotes a state
orthogonal to |ψ〉, whereas another NO instance (|ψ〉, |ψ⊥〉, |ψ〉, |ψ⊥〉) makes the circle test
produce a soundness error probability of 1/2 (which is far greater than 1/4).

In section 4, we show that the circle test for QSIn works asymptotically as good as the
permutation test, if we incorporate additional classical preprocessing with the circle test.

3. Approximation of the circle test by the swap test

We have shown in the previous section that the permutation test and the circle test are optimal
quantum operations to solve the identity problem QSI3 with one-sided error probability. From
a practical viewpoint, it would be ideal to build an identity test for QSI3 only with the swap
test as a main quantum ingredient. This is mainly because the swap test is much simpler than
the other two operations, and, more importantly, the swap test has been well studied for its
theoretical applications as well as its physical implementations (e.g., see [8, 12, 19]). How can
we develop such a test? A simple and natural approach is a sequential application of the swap
test (which we refer to as a Swap protocol). More precisely, a Swap protocol ‘classically’
chooses two quantum states for the swap test (out of three or more states) and applies the
swap test to them as its only true ‘quantum’ operation. In the following theorem, we present
a certain Swap protocol for QSI3, which asymptotically achieves the same soundness error
probability as the circle test does.

Theorem 1. Let m be any positive number at least 2. There exists a Swap protocol for QSI3,
which achieves the soundness error probability of at most 1/3 + 1/4m−1 by applying the swap
test m times sequentially.

6
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Proof. Let m � 2 be fixed throughout this proof. Our desired Swap protocol for QSI3,
referred to as SRS (sequential random swap), is given as follows.

Protocol SRS(m)
Input: three quantum states (|ψ1〉, |ψ2〉, |ψ3〉) ∈ H⊗3

(i) Randomly choose two of the three states |ψ1〉, |ψ2〉 and |ψ3〉.
(ii) Repeat the following two steps m times as long as the protocol does not halt.

(ii-1) Perform the swap test on the chosen two states. If the test outputs NOT EQUAL,
output NO and halt.
(ii-2) Choose the leftover state as well as one of the two resulting states at random.

(iii) Output YES.

If three input states are identical, then SRS(m) obviously outputs YES with certainty.
Consider the case where all the three input states are mutually orthogonal. Hereafter, we
deal only with an arbitrary NO instance (|ψ1〉, |ψ2〉, |ψ3〉) ∈ H⊗3. We first analyze the
soundness error probability for m = 2. In the protocol SRS(2), the first swap test at step
(ii-1) outputs NO with probability exactly 1/2, regardless of which states are chosen at step
(i). Without the loss of generality, we assume that |ψ1〉 and |ψ2〉 are the chosen states at
step (i). After the first swap test outputs EQUAL at step (ii-1), the resulting state is of the
form 1√

2
(|ψ1〉|ψ2〉 + |ψ2〉|ψ1〉) since |ψ1〉 and |ψ2〉 are orthogonal. At step (ii-2), we obtain

two input states: the pure state |ψ3〉 and the mixed state ρρρ = 1
2 (|ψ1〉〈ψ1| + |ψ2〉〈ψ2|). These

input states can be evaluated as EQUAL by the second swap test at step (ii-1) with probability
exactly 1

2 + 1
2 Tr(ρρρ|ψ3〉〈ψ3|) = 1

2 . Therefore, we obtain the correct answer NO at step (ii-1)
with probability exactly 1

2 + 1
2 · 1

2 = 3
4 . This gives the soundness error probability of 1/4,

which is smaller than 1/3. Since the soundness error probability of SRS(m) decreases as m
becomes larger, we conclude that SRS(m) has soundness error probability smaller than 1/3.

The more complex case is that two input states are identical and the remainder is orthogonal
to them. Because of the symmetry of our protocol, we can assume that |ψ1〉 = |ψ3〉 and
|ψ2〉 = ∣∣ψ⊥

1

〉
. We need to consider the following two cases:

(a) |ψ1〉 and |ψ2〉 (or alternatively |ψ2〉 and |ψ3〉) are chosen at step (i).
(b) |ψ1〉 and |ψ3〉 are chosen at step (i).

We begin with case (a). For notational convenience, we use the following abbreviations:
|1〉 := ∣∣ψ⊥

1

〉|ψ1〉|ψ1〉, |2〉 := |ψ1〉
∣∣ψ⊥

1

〉|ψ1〉 and |3〉 := |ψ1〉|ψ1〉
∣∣ψ⊥

1

〉
. It is not important for

us to choose, at step (ii-2), which of the two resulting states to apply the swap test, since if
the protocol does not halt, after step (ii-1), on, say, the first and the second states, the obtained
state is in the form: α(|1〉 + |2〉) + β|3〉. For simplicity, we assume that the second state is
always chosen at step (ii-2). For our further analysis, we need the following lemma. For
readability, we ignore normalization factors of quantum states in the lemma.

Lemma 3. Let k be any number in [m]. Under the condition that the protocol does not halt
after the (k − 1)th swap test in case (a), the (conditional) probability pk that the protocol does
not halt after the kth swap test is pk = 1 − 6

4k+8 . The obtained (non-normalized) state can be
represented as (ak + 1)|1〉 + (ak + 1)|2〉 + ak|3〉, where ak = 2

3 (4(k−1)/2 − 1), if k is odd, and
ak|1〉 + (ak + 1)|2〉 + (ak + 1)|3〉, where ak = 1

3 (4k/2 − 1), if k is even.

Meanwhile, we postpone the proof of this lemma. Let qk be the (accumulative) probability
that the protocol does not halt after the kth swap test in case (a). Since q1 = p1 and qk = pkqk−1

for any k � 2, lemma 3 implies that q1 = 1/2 and qk = (
1 − 6

4k+8

)
qk−1. These recurrence

equations have a unique solution qk = 1
3 + 2

3·4k for any number k � 1.
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Next, let us consider case (b). Let rk be the (accumulative) probability that the protocol
does not halt after the kth swap test in case (b). Under our assumption, case (b) can be analyzed
in the same way as case (a) if we replace k in case (a) by k + 1, because the first swap test
makes no effect on its subsequent computation. We then obtain that r1 = 1 and rk = qk−1 for
any number k � 2.

Note that case (a) holds with probability 2/3 and case (b) holds with probability 1/3.
Therefore, if the given input is a NO instance, where two of the three states are identical and
the other is orthogonal to them, the protocol SRS(m) outputs YES at step (iii) with probability
(2/3)qm + (1/3)rm = 1/3 + 1/4m−1, as requested.

Proof of lemma 3. The proof is done by induction on k � 1. Let pk denote the probability
that the protocol does not halt after kth swap test in case (a). Consider the basis case k = 1.
After the first swap test, since we obtain the state |1〉 + |2〉 with probability 1/2, the protocol
outputs NO with probability exactly 1/2. Hence, we have p1 = 1/2 and a1 = 0. In the case
of k = 2, note that the swap test is applied to the second and third states. The total state
including the first register (used by the quantum Fourier transform) evolves by the swap test
as follows:

(|0〉 + |1〉)(|1〉 + |2〉) 
→ |0〉(|1〉 + |2〉) + |1〉(|1〉 + |3〉)

→ (|0〉 + |1〉)(|1〉 + |2〉) + (|0〉 − |1〉)(|1〉 + |3〉)
= |0〉(2|1〉 + |2〉 + |3〉) + |1〉(|2〉 − |3〉).

Provided that the protocol does not halt, we obtain the state 2|1〉 + |2〉 + |3〉, which yields
a2 = 1. The desired probability p2 is thus calculated as

p2 = 1 − 12 + (−1)2

22 + 12 + 12 + 12 + (−1)2
= 3/4.

This yields the lemma for the case k = 2.
Next, let k be any integer greater than 2. First, we deal with the case where k is odd.

Assuming that the lemma holds for k, we want to show that the lemma also holds for k + 1.
By our induction hypothesis, we have the state |ψk〉 = (ak + 1)|1〉 + (ak + 1)|2〉 + ak|3〉 after
the kth swap test, where ak = 2

3 (4(k−1)/2 − 1). Note that the (k + 1)th swap test is applied to
the second and third states in |ψk〉. The swap test makes the total state evolve as follows:

(|0〉 + |1〉)((ak + 1)|1〉 + (ak + 1)|2〉 + ak|3〉)

→ |0〉((ak + 1)|1〉 + (ak + 1)|2〉 + ak|3〉)

+ |1〉((ak + 1)|1〉 + (ak + 1)|3〉 + ak|2〉)

→ (|0〉 + |1〉)((ak + 1)|1〉 + (ak + 1)|2〉 + ak|3〉)

+ (|0〉 − |1〉)((ak + 1)|1〉 + ak|2〉 + (ak + 1)|3〉)
= |0〉((2ak + 2)|1〉 + (2ak + 1)|2〉 + (2ak + 1)|3〉) + |1〉(|2〉 − |3〉).

We then obtain the state (2ak + 2)|1〉 + (2ak + 1)|2〉 + (2ak + 1)|3〉 if the protocol does not halt.
From this state, it immediately follows that ak+1 = 2ak + 1. Therefore, pk+1 has the value

pk+1 = 1 − 12 + (−1)2

(2ak + 2)2 + 2(2ak + 1)2 + 12 + (−1)2

= 1 − 2

(ak+1 + 1)2 + 2a2
k+1 + 2

.

Since ak+1 = 2ak + 1 = 1
3 (4(k+1)/2 −1), we finally obtain pk+1 = 1− 6

4k+1+8 . We thus conclude,
from the induction hypothesis for k, that the lemma holds for k + 1. A similar analysis

8
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verifies that the induction step also holds for any even number k. Therefore, the mathematical
induction guarantees the correctness of the lemma. �

This completes the proof of the theorem. �

As a direct consequence of theorem 1, we conclude that SRS is one of the best choices
among all Swap protocols solving the problem QSI3.

4. Approximation of the permutation test by the circle test

This section compares the performances of the circle test and of the permutation test. First, we
focus our attention on the circle test for QSIn, where n is a prime number. For such a number
n, we can show that the circle test has the same performance for QSIn as the permutation test
does. This indicates that the circle test is a best quantum test for any ‘prime’ input size n
among all one-sided error quantum operations for QSIn.

Proposition 4. Let n be a prime number. The circle test for QSIn achieves the soundness error
probability of at most 1/n.

Proof. Let n be any prime number and let (|ψ1〉, . . . , |ψn〉) be any instance of the identity
problem QSIn. Lemma 1 implies that the circle test outputs EQUAL on the instance with the
probability p = 1

n

∑n−1
k=0

∏n
m=1

〈
ψm

∣∣ψσk
c (m)

〉
. If (|ψ1〉, . . . , |ψn〉) is a YES instance, then it is

straightforward to show that p = 1. Next, we consider the case where (|ψ1〉, . . . , |ψn〉) is a
NO instance. Now, we claim the following.

Lemma 4. Let (|ψ1〉, . . . , |ψn〉) be any NO instance. For any number k ∈ [n− 1], there exists
an index m ∈ [n] such that

〈
ψm

∣∣ψσk
c (m)

〉 = 0.

From this lemma, it follows that the probability p equals 1
n

∏n
m=1

〈
ψm

∣∣ψσ 0
c (m)

〉
. Therefore,

the circle test outputs EQUAL on (|ψ1〉, . . . , |ψn〉) with probability 1
n

∏n
m=1

〈
ψm

∣∣ψσ 0
c (m)

〉
,

which is clearly upper bounded by 1/n.
To complete the proof of the proposition, we need to prove lemma 4. Let us assume,

toward a contradiction, that the lemma fails. By the promise of QSIn, there exists a number
k ∈ [n − 1] such that, for any number m ∈ [n], |ψm〉 = |ψσk

c (m)〉. Since (|ψ1〉, . . . , |ψn〉) is
a NO instance, there exist two indices μ and μ′ for which 〈ψμ|ψμ′ 〉 = 0. This yields the
existence of a proper subset I = {μ1, μ2, . . .} of [n] satisfying that |ψμ〉 = |ψν〉 for any
pair μ, ν ∈ I , and 〈ψμ|ψν〉 = 0 for any μ ∈ I and ν ∈ [n]\I . Choose μ1 in I. Since
|ψm〉 = |ψσk

c (m)〉 for any m ∈ [n], we obtain
∣∣ψμ1

〉 = ∣∣ψσk
c (μ1)

〉 = ∣∣ψσ 2k
c (μ1)

〉 = · · ·. Let
S = {

μ1, σ
k
c (μ1), σ

2k
c (μ1), . . .

}
. It follows from the definition of I that S ⊆ I . Since the set

S is the Zn-orbit with respect to μ1, its cardinality is a divisor of n. The ‘prime’ condition of
n concludes that [n] = S. Since S ⊆ I , we have I = [n], which contradicts our assumption
that I is a proper subset of [n]. This completes the proof of the lemma and thus completes the
proof of the proposition. �

For an arbitrary input size n, how good is the performance of the circle test for QSIn,
compared to the permutation test? Under the one-sided error requirement, as seen in
section 2, the circle test, in general, cannot be optimal for QSIn. Nevertheless, it is possible to
give a simple and almost optimal protocol, called RCIR (randomized circle test), which uses
the circle test only once after the classical processing of permuting n quantum states randomly.

Protocol RCIR
Input: n quantum states (|ψ1〉, |ψ2〉, . . . , |ψn〉) ∈ H⊗n

9
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1φ
2φ

12φ

3φ

Figure 1. An example of cyclic alignment of all I1 states with n = 12 and |I1| = 6.

(i) Permute the input quantum states by a randomly chosen permutation τ ∈ Sn. Let
(|φ1〉, . . . , |φn〉), where |φj 〉 = |ψτ(j)〉, be the resulting quantum states.

(ii) Apply the circle test to (|φ1〉, . . . , |φn〉).
We show that the protocol RCIR is an ‘asymptotically’ optimal quantum operation for

QSIn up to a constant multiplicative factor of nearly π2/6.

Theorem 2. The protocol RCIR meets the one-sided error requirement and achieves the
soundness error probability of at most π2/6n + O(1/n2) � 1.7/n + O(1/n2).

Proof. With the same reasoning given in the proof of proposition 1, it suffices to analyze only
NO instances (|ψ1〉, . . . , |ψn〉) whose indices are divided into two sets I1 and I2 such that
any two states with indices in I1 (also, I2) are identical and any pair of states, one of which
has an index in I1 and the other has an index in I2, is orthogonal. In what follows, we call a
state whose index is in I1 (resp. I2) an I1 state (resp. I2 state). Let I1 and I2 be such sets of
indices of the permuted states {|φ1〉, . . . , |φn〉} obtained at step (i) of the protocol RCIR. For
convenience, let I1 = {μ1, μ2, . . . , μr} with μ1 < μ2 < · · · < μr and I2 = [n]\I1, where
r ∈ [n − 1]. Without the loss of generality, we assume that |I1| � |I2|; namely, r � n/2. Let
us also assume that there are exactly s elements k1 = 0, k2, . . . , ks ∈ {0, 1, . . . , n − 1} such
that each number k ∈ {k1, . . . , ks} satisfies

〈
φm

∣∣φσk
c (m)

〉 = 1 for any number m ∈ [n]. Lemma
1 concludes that the soundness error probability of the protocol equals s/n. The following
lemma is easily proven.

Lemma 5. Let K = {k1, k2, . . . , ks}.
(i) For any m � 1, if k′ ∈ K then so is mk′.
(ii) If k′, k′′ ∈ K then so is GCD(k′, k′′).

By lemma 5, the set K = {k1, k2, k3, . . . , ks} can be of the form k1 = 0, k2 = k, k3 =
2k, . . . , ks = (s − 1)k for the divisor k(= n/s) of n. For convenience, we call s and k the
repetition number and the cycle size, respectively.

To help the reader, let us see an example. Figure 1 renders a cyclic alignment of all I1

states with parameters n = 12 and r = 6, where the repetition number s is 3 and the cycle
size k is 4. A black node (resp. white node) indicates an I1 state (resp. I2 state). Each cyclic
alignment of I1 states induces an I1 pattern, which is a bit string (b1, . . . , bk) defined by bi = 1
if i ∈ I1 and 0 otherwise. In figure 1, this I1 pattern is (1, 1, 0, 0). By the definition of cycle
size k, such an I1 pattern uniquely characterizes a cyclic alignment of I1 states as follows: for
any j ∈ {0, 1, . . . , s − 1} and i ∈ [k], the index jk + i ∈ [n] is in I1 if i ∈ I1, and in I2 if

10
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i ∈ I2. Note that the Hamming weight of (b1, . . . , bk), which indicates the number of indices
in [k] ∩ I1, is exactly |I1|/s = r/s.

Now, we return to our proof. We wish to show that the soundness error probability for
any fixed r is at most π2/6n + O(1/n2). Let ps be the probability that a cyclic alignment
of I1 states with repetition number s is chosen by the protocol RCIR. Note that, as far as
GCD(n, r) = 1, s equals 1; hence, we have p1 = 1. This implies that the soundness error
probability equals 1/n. Since a cyclic alignment of all I1 states is randomly chosen, it follows

that, for s � 2, ps � ( k

r/s)
(n

r)
= (n/s

r/s)
(n

r)
. Recall that any cyclic alignment of I1 states with repetition

number s produces the soundness error probability of s/n. Therefore, the total soundness
error probability is at most

p1 · 1

n
+

∑
s:s|n

(
n/s

r/s

)
(
n

r

) · s

n
� 1

n
+

∑
s:s|n

(
n/s

r/s

)
(
n

r

) · s

n
. (2)

To upper bound equation (2) further, we need the following technical lemma. Recall that

s is a divisor of r. For convenience, let q(n, r, s) = (n/s

r/s)
(n

r)
· s

n
.

Lemma 6. The value q(n, r, s) is at most 1
ns2 if s � r/3, 6

(n−1)(n−2)(n−3)
if s = r/2 and 2

n(n−1)

if s = r .

We continue our argument. Lemma 6 helps us upper bound the right-hand expression of
equation (2) as

1

n
+

∑
s:s|n

(
1

ns2

)
+ O(1/n2)

� 1

n
+

∞∑
s=2

(
1

ns2

)
+ O(1/n2) = 1

n
+

π2/6 − 1

n
+ O(1/n2).

The last expression is clearly equal to π2/6n + O(1/n2), as requested.
What remains is to prove lemma 6. Consider the first case s = r . In this case, we have

q(n, r, s) = (n/s

1 )
(n

s)
· s

n
= 1

(n

s)
, which is bounded from above by 1

(n

2)
= 2

n(n−1)
because s � 2. Let

us consider the second case s = r/2. The expression q(n, r, s) is further calculated as

q(n, r, s) =
(
n/s

2

)
(

n

2s

) · s

n
= 2s(2s − 1) · · · 1

n(n − 1) · · · (n − 2s + 1)
· n/s − 1

2
. (3)

Noting that 2s � 4, 2s = r � n/2 and n − 2s + 1 � n/2 + 1, it follows from equation (3) that
q(n, r, s) is at most

1 · 2 · 3 · 4 · · · 2s

n(n − 1)(n − 2)(n − 3) · · · (n − 2s + 1)
· n

2s

� 1 · 2 · 3 · 4

n(n − 1)(n − 2)(n − 3)
· n

4
= 6

(n − 1)(n − 2)(n − 3)
.

In the final case s � r/3, the expression q(n, r, s) equals

q(n, r, s) =
(
n/s

r/s

)
(
n

r

) · s

n
=

(n/s)(n/s−1)···(n/s−r/s+1)

(r/s)(r/s−1)···1
n(n−1)···(n−r+1)

r(r−1)···1
· s

n

= s · n
s
· · · ( n

s
− r

s
+ 1

) · r · · · 1

n · n · · · (n − r + 1) ( r
s
· · · 1)

,

11



J. Phys. A: Math. Theor. 41 (2008) 395309 M Kada et al

which is clearly at most

s

n

(
n/s

n

)r/s r · · · ( r
s

+ 1
)

(
n − r

s

) · · · (n − r + 1)
.

This expression is further upper bounded by s
n

(
1
s

)r/s
, since 2 � s � r � n/2 implies

r
n− r

s

� 2/3. From our assumption s � r/3, it therefore follows that

q(n, r, s) � s

n

(
1

s

)r/s

� s

n

(
1

s

)3

= 1

ns2
.

This ends the proof of the lemma and thus the proof of theorem 2. �

5. Closing discussion

The swap test has been widely used in the literature to test the identity of two quantum states.
In this paper, we have studied two additional tests, the permutation test and the circle test,
which generalize the swap test. We have analyzed the performances of these two tests for the
quantum-state identity problem, QSIn, under the one-sided error requirement. Throughout this
paper, we have restricted our attention to the identity problem’s promise (in the definition of
QSIn) and also the one-sided error requirement. These restrictions make our analysis easier;
nevertheless, the restrictions can be relaxed. We briefly discuss how our result can be applied
to less-constrained situations.

The promise of our identity problem QSIn demands that any pair of quantum states is
identical or orthogonal. By relaxing the latter orthogonality, we can consider the following
weak form of an identity problem, denoted QSIεn, in which we want to determine either
(a) all n quantum states are identical or (b) there are two states whose inner product is less
than or equal to ε, provided that either (a) or (b) holds. This problem QSIεn was dealt with in
a fingerprinting protocol in [7]. Our results in this paper still provide a good proximity of the
three tests to the problem QSIεn since QSIn coincides with QSIεn when ε = 0.

Our one-sided error requirement requests that the completeness error probability should
be 0. This requirement naturally occurs in the literature regarding the swap test (e.g., [6, 7,
18]). As a natural relaxation of this requirement, when we allow non-zero completeness error
probability, we obtain the two-sided error requirement. Even with this relaxed requirement,
we can claim that the swap test is ‘optimal’ in the sense that the swap test achieves the largest
gap between the probabilities that EQUAL is outputted on YES instances and on NO instances.
This claim can be shown by a trace-norm distance argument as follows.

Consider the two YES instances (|0〉, |0〉) and (|1〉, |1〉), where each input is a single
qubit. For simplicity, let us denote them by |00〉 and |11〉, respectively. Similarly, consider
two NO instances | + −〉 and | − +〉, where |+〉 = (|0〉 + |1〉)/√2 and |−〉 = (|0〉 − |1〉)/√2.
Now, let ρρρy = 1

2 (|00〉〈00| + |11〉〈11|) and ρρρn = 1
2 (| + −〉〈+ − | + | − +〉〈− + |). Write pc and

ps for the completeness and soundness error probabilities, respectively, of the test. There is a
POVM M such that the l1-norm gap GAP between two probability distributions obtained by
M on ρρρy and ρρρn is at least |(1 − pc) − ps | + |(1 − ps) − pc| = 2 − 2pc − 2ps . In contrast,
since the trace-norm distance between ρρρy and ρρρn is 1/2, the value GAP should be at most 1
[1] (see also [15]). This yields the inequality pc + ps � 1/2. Note that the swap test achieves
the equality pc + ps = 1/2. Therefore, the swap test is optimal even in the two-sided error
requirement.

With a similar argument for the circle test for QSI3, we can prove that the circle test is
also ‘optimal’ with two-sided error probability. In contrast, the optimality of the permutation
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test under the two-sided error requirement is currently open. We expect the optimality of the
permutation test; however, it is likely that the trace-norm distance argument for the permutation
test is insufficient to prove the optimality under the two-sided error requirement.

Another interesting open question in line of our work is to seek an efficient approximation
of the permutation test for QSIn by use of a certain Swap protocol that runs the swap test
O(n) times. Such a Swap protocol provides an ideal construction of a quantum circuit that
implements the permutation test since it is much more concise than the direct construction of
the permutation test based on the decomposition of the Fourier transform Fn! over n! elements.
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